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Abstract The correlation coefficient
is commonly used to evaluate the de-
gree of linear association between
two variables. However, it can be
shown that a correlation coefficient
very close to one might also be ob-
tained for a clear curved relation-
ship. Other statistical tests, like the
Lack-of-fit and Mandel’s fitting test
thus appear more suitable for the
validation of the linear calibration
model. A number of cadmium cali-
bration curves from atomic absorp-
tion spectroscopy were assessed for
their linearity. All the investigated
calibration curves were characterized
by a high correlation coefficient 
(r >0.997) and low quality coeffi-
cient (QC <5%), but the straight-line
model was systematically rejected at
the 95% confidence level on the ba-

sis of the Lack-of-fit and Mandel’s
fitting test. Furthermore, significant-
ly different results were achieved be-
tween a linear regression model
(LRM) and a quadratic regression
(QRM) model in forecasting values
for mid-scale calibration standards.
The results obtained with the QRM
did not differ significantly from the
theoretically expected value, while
those obtained with the LRM were
systematically biased. It was con-
cluded that a straight-line model
with a high correlation coefficient,
but with a lack-of-fit, yields signifi-
cantly less accurate results than its
curvilinear alternative.
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Introduction

The linear range of most analytical instruments is known
to be limited. Therefore, during method validation the
linearity of the calibration curve should be assessed and
the working range of the calibration curve should be de-
termined. [1, 2]. The correlation coefficient (r) is com-
monly used for this purpose, and curves with r ≥ 0.995
are usually considered to be linear. Nevertheless, several
investigators focussed on the fact that r might not be a
useful indicator of linearity [2, 3], and other statistical
tests or quality parameters have been suggested to ascer-
tain the goodness of fit of the calibration curve [2, 4, 5]. 

On the contrary, a calibration curve with r ≥ 0.995
can be considered nearly linear. Furthermore, from an in-
ference point of view, linear regression models (LRMs)

are easy to implement, compared to curvilinear or non-
linear regressions models [6]. Therefore, a straight-line
calibration curve should always be preferred over curvi-
linear or non-linear calibration models if equivalent re-
sults can be gained. A prerequisite, however, is that one
should be able to assess this equivalence. In other words,
is there any evidence for a systematic difference between
the results of the two models at a given confidence lev-
el?

In this paper, cadmium calibration curves from atomic
absorption spectroscopy (AAS) were tested for their lin-
earity. Alternative curvilinear regressions were proposed
when linearity was rejected. Predictions made on the ba-
sis of the fitted curve for both linear and curvilinear
models were compared.
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Assessing the linearity of calibration curves

Graphite furnace atomic absorption spectroscopy (GF-
AAS) is known to have a limited linear calibration range.
In order to assess the linearity of the calibration process,
several calibration lines for cadmium were constructed
over a period of 4 months. These calibrations were per-
formed using standard solutions prepared from the corre-
sponding high purity metal Baker Cd Atomic Absorption
Standard of 1000 µg/ml (National Institute for Standards
and Technology – NIST traceable). The GF-AAS was
programmed to produce a calibration curve with the fol-
lowing concentrations: 0, 0.8, 1.6, 2.4, 3.2 and 4.0 ng/ml.
The solutions were injected in duplicate. 

The linearity of the calibration process was investi-
gated by means of the Lack-of-fit test [2], Mandel’s fit-
ting test value [5], the quality coefficient (QC) [2,4] and
r [3,2]. The results are summarized in Table 1.

The Lack-of-fit test and Mandel’s fitting test are com-
monly used to ascertain whether the chosen regression
model adequately fits the data. The test values for these
two statistical tests follows an F-distribution and the sig-
nificance of the test values can be calculated. On the
contrary, the QC and r are used to arbitrary accept or re-
ject the LRM. The equations of the QC and r for LRMs
are given below:

(1)

(2)

with Yi the measured response and Ŷi the response pre-
dicted by the model.

The results in Table 1 shows that for the Lack-of-fit
test the LRM must systematically be rejected at the 95%
confidence level (Fcrit,95% = 4.53), and for Mandel’s fit-
ting test even rejected at the 99% confidence level
(Fcrit,99% = 10.56). Thus, despite the fact that r and QC
are greater than 0.997 and lower than 5%, respectively,
the linearity of the calibration lines were rejected on the
basis of the before mentioned F-tests. This corroborates
the statements of the Analytical Methods Committee [3]
that r should be used with care when evaluating the lin-
earity of calibration lines. Moreover, questions arise re-
garding the significance of QC, for which an upper limit
of 5% was proposed in assessing the suitability of a cali-
bration process [4]. Here, even with a QC-value less than
3%, the LRM is rejected at the 95% confidence level
(Table 1).

Alternatively, the residual plots give useful informa-
tion to validate the chosen regression model. The residu-
al plot can be used to check whether the underlying as-
sumptions, like normality of the residuals and homosce-
dasticity, are met as for evaluating the goodness of fit of
the regression model [2]. Figure 1a shows a residual plot
for an LRM. The U-shaped residual plot indicates that a
curvilinear regression model should be preferred over an
LRM. 

Several authors [2, 6, 8–11] recommended alternative
calibration functions when linearity of the calibration
curve has to be rejected. In order to correct the non-lin-
earity, a quadratic curvilinear function (f(x) = a + bx
+cx2) was chosen. The Lack-of-fit tests for the quadratic
regression model (QRM) are summarized in Table 1. The
test for Lack-of-fit reveals that this QRM adequately fits
the calibration data at 99% (highly significant) confi-
dence level and at the 95% (significant) confidence level
in all cases except one. In determining whether the order
of the polynomial regression model is appropriate, the
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Table 1 The F-value of the
Lack-of-fit (LOF) test 
(Fcrit,95% = 4.53) and Mandel’s
fitting test (Fcrit,95%= 5.12) are
compared with the quality co-
efficient and the correlation co-
efficient for several linear cali-
bration lines of Cd. For the
quadratic regression model, the
F-value of the Lack-of-fit test
(Fcrit,95%=4.76) and the P-value
for testing significance of the
second order coefficient for the
quadratic regression model are
represented. The significant
values at the 95% confidence
level are underlined

Linear regression model Quadratic regression model

LOF Mandel’s QC (%) r LOF P-value on
test value second-order

coefficient

11.08 51.46 3.93 0.9982 0.63 0.0000
19.42 56.84 4.23 0.9978 1.58 0.0000

7.13 26.29 3.67 0.9985 0.94 0.0006
6.99 37.73 3.79 0.9984 0.18 0.0002

11.43 58.21 4.03 0.9981 0.31 0.0000
29.91 53.02 3.53 0.9986 4.08 0.0000
49.80 71.07 3.76 0.9984 5.69 0.0000
23.77 73.86 3.19 0.9989 1.66 0.0000
31.95 63.37 3.24 0.9988 3.55 0.0000

7.49 33.50 2.92 0.9991 0.54 0.0003
9.99 55.19 3.95 0.9983 0.15 0.0000

10.71 28.65 4.70 0.9975 1.89 0.0005
25.21 79.60 3.34 0.9987 1.62 0.0000
13.16 35.74 3.37 0.9987 1.93 0.0002
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significance of the second order coefficient is estimated.
The P-value on the second order coefficient, shown in
Table 1, is systematically smaller than 1%. Consequent-
ly, a lower order model should not be considered. In ad-
dition, residual plots (Fig. 1b) were constructed for this
QRM. The residuals were randomly scattered within a
horizontal band around the centre line. Therefore, the
QRM was chosen as the reference model. It is noted that
an increase of the variance is observed at higher concen-
trations.

Predictions made on the basis of the fitted curve
for linear (LRM) and quadratic (QRM) regression
models

To gauge the agreement/disagreement between predicted
concentrations calculated from the LRM and the QRM, a
mid-scale calibration standard (2 ng/ml) was systemati-
cally injected in duplicate. The instrument signal corre-
sponds to a point close to the centroid of the data cloud,
where the confidence limits for the regression line of
LRM is the narrowest. 

To compare the outcome of both regression models,
the predicted concentration of the mid-scale standard
was expressed both as a recovery rate and as a relative
deviation. Hence, the following equations were used:

(3)

Relative deviation (%) = 100-recovery (%) (4)

In order to investigate possible effects of time, several
calibration lines were produced over a period of almost 4
months. The mid-scale standard was determined twice at
the beginning and at the end of an analysis. The recovery
rate and relative deviation of the results are summarized
in Table 2.

If both curves yield equivalent results and are not bi-
ased, the recovery rate should be around 100%. Figure 2

Recovery (%) = determined concentration
nominal concentration ×100%

Fig. 1 Plots of residuals for (a)
the linear regression model
(LRM) and (b) the quadratic
regression model (QRM) ver-
sus predicted values

Fig. 2 Recovery results for the mid-scale standard calculated with
a second-order calibration curve (QRM) and a linear calibration
curve (LRM)

shows the recovery rates for the mid-scale standard cal-
culated with the LRM and the QRM. It clearly appears
that the median from the LRM differs from the theoreti-
cal value of 100%. In general, the recovery rates are
overestimated when calculated with the LRM. A system-
atic error of about 4% was found.

This result is supported by the Wilcoxon one-sample
test [12]. The null hypothesis (median = 100%) is reject-
ed for the results determined with the LRM (P = 0.0004),
but not for those derived from the QRM (P = 0.1788).
The one-sample student t-test gave similar outcomes
(LRM: P = 8.3.10–8, QRM: P = 0.177).

Furthermore, to gauge whether the results calculated
with the QRM were more accurate than those obtained
from the LRM the relative deviation of the data were
compared. The non-parametric paired “sign” test was
chosen for this evaluation because the relative deviations
were not symmetrically distributed. The “sign” test is an
alternative to the paired t-test, when the underlying as-
sumptions of the student t-test are violated. The “sign”
test makes use of positive and negative signs depending



on the difference between the values in conditions 1 and
2. The null-hypothesis is rejected if the number of posi-
tive and negative signs is statistically different. The null-
hypothesis stating equivalent results from both models
must be rejected in this case (n- = 14, n+ = 2, P <0.006).
Therefore, our results indicate a systematic bias on the
forecast concentration when applying the LRM. The rel-
ative deviation for the QRM is significantly smaller than
the one obtained from the LRM. This means that the bias
for the results obtained with LRM is larger than the bias
of the results from the QRM. 

On the contrary, there is no evidence for a difference in
the spread or dispersion of the results between both mod-
els, which has been confirmed with the Levene test for ho-
mogeneity of variances. (FLevene = 2.70; P = 0.11) [13].

Conclusion

As claimed by several investigators [2, 3], this paper cor-
roborates the fact that the correlation coefficient is not a
useful indicator of linearity in the calibration model,
even for r-values >0.997. In addition, the present results
raise the question about the relevance of the QC in as-
sessing the process calibration. Other statistical tests like

the Lack-of-fit and Mandel’s fitting test seems more ap-
propriate for evaluating the linearity of the calibration
curve during method validation. Preferably, the Lack-of-
fit and Mandel’s fitting test should be used in conjunc-
tion with an evaluation of the residual plot.

Furthermore, it is shown that a straight-line model
with r >0.997 and QC <5% but with Lack-of-fit, yielded
forecast values for a mid-scale calibration standard that
significantly differ from the nominal ones. In general,
the recovery tests were overestimated, while the preci-
sion on the result was comparable in both the LRM and
QRM. The bias can be considered as significant since the
repeatability of the injection of standard solutions is usu-
ally less than 2% relative standard deviation (RSD). Fur-
thermore, the situation would be even worse if the com-
parison had been carried out with either high- or low-
range calibration standards. 

In conclusion, the results in this paper indicate that
the correlation coefficient is not suitable for assessing
the linearity of calibration curves. Statistical tests like
the Lack-of-fit and Mandel’s fitting test should be sys-
tematically applied during full method validation. It was
shown that in this application cadmium concentrations
calculated with the LRM were constantly overestimated
by about 4%.
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Table 2 Recovery and relative
deviations for the linear (LRM)
and quadratic (QRM) calibra-
tion curves for cadmium.

LRM QRM

Recovery Relative deviation Recovery Relative deviation

104.8 4.8 100.8 0.87
103.1 3.1 99.1 0.86
103.6 3.6 99.8 0.22
108.3 8.3 104.5 4.5
104.7 4.7 101.1 1.1
106.2 6.2 102.7 2.7
105.0 5.0 101.5 1.5
106.7 6.7 103.2 3.2
104.1 4.1 99.8 0.18
102.4 2.4 98.1 1.9
102.4 2.4 97.4 2.6
105.9 5.9 101.0 0.97
106.4 6.4 103.4 3.4
106.4 6.4 103.4 3.4
101.4 1.4 97.6 2.4
102.8 2.8 99.1 0.90

Mean 104.6 4.6 100.8 1.9
Standard deviation 1.9 1.9 2.2 1.3
Median 104.7 4.7 100.9 1.7
1st Quartile 103.1 3.0 99.1 0.88
3rd Quartile 106.3 6.3 102.8 2.9
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